Response of human HTB140 melanoma cells to conventional radiation and hadrons.
نویسندگان
چکیده
Conventional radiotherapy with X- and gamma-rays is one of the common and effective treatments of cancer. High energy hadrons, i.e., charged particles like protons and (12)C ions, due to their specific physics and radiobiological advantages are increasingly used. In this study, effectiveness of different radiation types is evaluated on the radio-resistant human HTB140 melanoma cells. The cells were irradiated with gamma-rays, the 62 MeV protons at the Bragg peak and in the middle of the spread-out Bragg peak (SOBP), as well as with the 62 MeV/u (12)C ions. The doses ranged from 2 to 24 Gy. Cell survival and proliferation were assessed 7 days after irradiation, whereas apoptosis was evaluated after 48 h. The acquired results confirmed the high radio-resistance of cells, showing better effectiveness of protons than gamma-rays. The best efficiency was obtained with (12)C ions due to higher linear energy transfer. All analyzed radiation qualities reduced cell proliferation. The highest proliferation was detected for (12)C ions because of their large killing capacity followed by small induction of reparable lesions. This enabled unharmed cells to preserve proliferative activity. Irradiations with protons and (12)C ions revealed similar moderate pro-apoptotic ability that is in agreement with the level of cellular radio-resistance.
منابع مشابه
Radiosensitivity of human ovarian carcinoma and melanoma cells to γ-rays and protons
INTRODUCTION Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to γ-rays and protons. MATERIAL AND METHODS Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was ...
متن کاملInduction of a bystander effect after therapeutic ultrasound exposure in human melanoma: In-vitro assay
Background: The induction of bystander effect via ionizing radiation has been well proven. However, few studies have investigated the bystander effect following non-ionizing radiation, such as ultrasound waves. Here, the bystander effect after different sonication times on human melanoma cell line (A375), is evaluated by assessing cell viability and apoptosis. Materials and Methods: The cells w...
متن کاملEffects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation
BACKGROUND Considering that HTB140 melanoma cells have shown a poor response to either protons or alkylating agents, the effects of a combined use of these agents have been analysed. METHODS Cells were irradiated in the middle of the therapeutic 62 MeV proton spread out Bragg peak (SOBP). Irradiation doses were 12 or 16 Gy and are those frequently used in proton therapy. Four days after irrad...
متن کاملEffect of low level laser irradiation with vitamin A on cell viability and apoptosis induction of human skin melanoma
Background: Skin cancer is the most prevalent type of cancer and melanoma is the deadliest kind of skin cancer in the world. Due to enhanced induction of apoptosis and ROS levels, low-level lasers can be utilized to destroy skin cancer cells. Lasers are used to treat some skin lesions. Vitamin A is beneficial in the prevention and treatment of skin cancer. Vitamin A inhibits the pathway of canc...
متن کاملSystemic Targeted Alpha Radiotherapy for Cancer
Background: The fundamental principles of internal targeted alpha therapy for cancer were established many decades ago.The high linear energy transfer (LET) of alpha radiation to the targeted cancer cellscauses double strand breaks in DNA. At the same time, the short range radiation spares adjacent normal tissues. This targeted approach complements conventional external beam radiotherapy and ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological research
دوره 60 Suppl 1 شماره
صفحات -
تاریخ انتشار 2011